H13 钢表面激光原位自生 TiC 颗粒增强复合涂层的微观结构和摩擦磨损性能

姚 爽 刘洪喜 张晓伟 李 琦 张 旭

(昆明理工大学材料科学与工程学院,云南昆明 650093)

摘要 利用 6 kW 横流 CO₂ 激光器在 H13 钢基材表面原位合成了以 TiC 颗粒为增强相的复合熔覆层。借助 X 射 线衍射(XRD)和能谱仪(EDS)分析了涂层的物相组成,结合光学显微镜(OM)和扫描电子显微镜(SEM)观察了涂 层的微观组织,运用显微硬度仪和摩擦磨损试验机测试了涂层的硬度和摩擦磨损性能。结果表明,当预置层中 Ti 与 Cr₃C₂物质的量比为 2.44:1时,熔覆层的主要物相为碳化物 TiC、Cr₇C₃和 Fe-Cr 固溶体。随着预置层中 Ti 含量 的减少,即当预置层中 Ti 与 Cr₃C₂物质的量比为 2:1时,熔覆层中 Cr₇C₃ 相增多,而当预置层中 Ti 与 Cr₃C₂物质的量比为 2:1时,熔覆层中 Cr₇C₃ 相增多,而当预置层中 Ti 与 Cr₃C₂物质的量比为 2:2.33 时,熔覆层中则出现 (Cr,Fe)₇C₃ 相。SEM 和 EDS 分析显示,TiC 增强相随激光功率密度的增大由 球状向薄层状转变。当预置层中 Ti 与 Cr₃C₂物质的量比为 2:2.33,激光功率密度为 24.38 kW・cm⁻²时,涂层表 面宏观质量良好,无气孔裂纹缺陷,涂层截面平均显微硬度达到 931.9 HV_{0.2},约为基材的 2.21 倍,最低磨损失重 仅为基材的 27.2 %。

关键词 激光技术;激光熔覆;原位自生;复合涂层;摩擦磨损;显微组织 中图分类号 O436 **文献标识码** A **doi**:10.3788/CJL201441.1003004

Microstructure and Wear Property of TiC Particle Reinforced Composite Coatings on H13 Steel Surface by Laser *in-situ* Synthesis

Yao Shuang Liu Hongxi Zhang Xiaowei Li Qi Zhang Xu

(School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China)

Abstract *In-situ* TiC particle reinforce composite coating is synthesized on H13 steel surface by laser cladding technique. The phase composition, microstructure, friction and wear behavior and Vickers hardness of composite coating are analyzed using X-ray diffraction (XRD), energy dispersive spectrometer (EDS), optical microscopy (OM), scanning electron microscopy (SEM), wear testing machine and Vickers hardness gage. The results show that the laser cladding composite coating is mainly composed of TiC, $C_7 C_3$ and Fe-Cr phases under the molar ratio of Ti to $Cr_3 C_2$ of 2.44:1 condition. The content of $Cr_7 C_3$ phase in coating increases under the molar ratio Ti to $Cr_3 C_2$ of 2:1 condition, while (Cr, Fe)₇ C_3 phase is found under the molar ratio Ti to $Cr_3 C_2$ of 2:2.33 condition. SEM and EDS analysis indicate that the microstructure of TiC phase gradually changes from ball shape to lamellar with the increasing of laser power density. The cladding coating surface macro morphology is good and no pores or cracks under the molar ratio Ti to $Cr_3 C_2$ of 2:2.33 and the laser power density 24.38 kW • cm⁻² condition. The highest average Vickers hardness of the laser cladding composite coating is 931.9 HV_{0.2}, which is about 2.21 times higher than that of the H13 steel substrate. The lowest wear weight loss of the composite coating is only 27.2 % of the substrate.

Key words laser technique; laser cladding; *in-situ* synthesis; composite coatings; friction and wear behavior; microstructure

OCIS codes 160.3900; 240.6700; 310.1515

收稿日期: 2014-03-20; 收到修改稿日期: 2014-05-15

基金项目:国家自然科学基金(61368003)

作者简介:姚 爽(1988—),女,硕士研究生,主要从事激光束表面改性方面的研究。E-mail: yskunming@gmail.com 导师简介:刘洪喜(1972—),男,博士,教授,主要从事离子激光束和激光束表面改性等方面的研究。

E-mail: piiiliuhx@sina.com(通信联系人)

1 引 言

激光熔覆技术适用于局部易发生磨损、冲击、剥 蚀、氧化腐蚀工件的修复及局部要求特殊性能零部 件的再制造^[1-3]。H13 钢因其良好的抗热冲击、热 疲劳和耐磨性被广泛应用于各种铸锻模具,尤其是 汽车连杆热锻模。但汽车连杆热锻模在服役过程中 不断承受冷热交变和冲击载荷作用,表面易出现热 磨损、高温氧化和热疲劳等而失效,导致模具寿命大 大降低^[4-8]。

近年来,采用激光熔覆制备高性能金属基陶瓷 复合涂层以提高 H13 钢连杆热锻模使用寿命的研 究已有少许报道。汤晓丹等^[9]采用7kW高功率 CO2激光器在 H13 钢表面制备了 H13-TiC 复合涂 层,发现熔覆层的硬度提高了2倍,耐磨性能提高了 3.5 倍,同时,在 600 ℃高温下表现出良好的热稳定 性。Zhang^[10]在H13钢压铸模表面激光熔覆了Fe +VC 粉末,发现制备的 VC 颗粒增强 Fe 基复合涂 层平均显微硬度提高了5倍,显著延长了压铸模使 用寿命。Lee 等[11-12] 用激光熔覆代替传统钨极惰 性气体保护焊修复压铸模受损表面,利用 200 W 光 纤激光器在 H13 钢表面成功制备了 Fe-Ni-Cr 涂 层,发现降低激光功率,提高扫描速度、增加填充间 距可避免涂层球化。Fe-Ni-Cr 粉颗粒越大,获得表 面光滑的涂层需要更大的热输入,所得熔覆层显微 硬度最高为基材的 2.1 倍。Jiang 等[13]分别激光熔 覆了 20%、40%、80%(摩尔分数)TiC 与 H13 的混 合粉末,熔池冷却析出后的 TiC 组织多呈现球状、 棒状、花瓣状和枝晶状。当 TiC 的摩尔分数为 40% 时,熔覆层在泥浆冲蚀试验中表现出优良的耐腐蚀 性能。但这些研究多集中于单一涂层和外加陶瓷颗 粒复合涂层,基于 H13 钢连杆热作模具钢服役过程 中的恶劣工况,单一涂层在高应力和高磨损条件下 的耐磨耐蚀性仍有待进一步提高。同时,外加陶瓷 颗粒也易产生气孔和裂纹等缺陷。因而,激光熔覆 原位自生陶瓷复合涂层便成为近年来的研究热 点^[14-17]。

鉴于此,以 Cr₃C₂ 粉和 Ti 粉为熔覆材料,本文 采用激光熔覆技术在 H13 钢汽车连杆热锻模表面 原位制备了 TiC 颗粒增强的陶瓷复合涂层,分析了 两种粉末在不同物质的量比下所制备熔覆涂层的宏 观形貌和显微组织,研究了涂层中 TiC 含量及其结 构特征随激光功率密度的变化关系,并探讨了复合 涂层中原位自生 TiC 的形成机理。

2 试验方法

2.1 反应机制

基于 Ti 与 Cr₃C₂ 高温下可进行如下反应^[18]: 2Ti + Cr₃C₂ →2TiC + 3Cr, (1)

根据热力学计算的经典方法可知[19]:

$$\Delta G = \Delta H - T \Delta S, \qquad (2)$$

式中 ΔH 为化学反应焓变, ΔS 为化学反应熵变, ΔG 为化学反应吉布斯自由能,T为反应温度。当 $\Delta G < 0$ 时,反应向右进行,即反应过程总是向着体系自由 能降低的方向进行。该反应的吉布斯自由能随时间 的变化(HSC Chemistry 软件计算)结果如图 1 所 示。可以看出,Ti 和 Cr₃C₂反应吉布斯自由能 $\Delta G < 0$,表明在试验温度下,Ti 与 Cr₃C₂化学反应 可生成 TiC。

从(1)式可看出,2 mol Ti 可与 1 mol Cr₃C₂ 完 全反应。因为高能激光束的快速加热和快速冷却作 用,在高功率密度辐照时,预置粉末会发生烧损而引 发反应粉末减少的情况。为确定激光熔覆时最佳粉 末成分配比,选取三种粉末成分配比,一组 Ti 粉物 质的量比过量,一组 Ti 粉与 Cr₃C₂ 物质的量比恰 好,一组 Cr₃C₂ 物质的量比比过量,成分设计按 Ti:Cr₃C₂摩尔比依次为 A 组 2.4:1,B 组 2:1和 C 组 2:1.5 进行配比。

依照上述分析,从理论上看,通过激光熔覆 Ti 和 Cr₃C₂ 的混合粉末完全可原位自生出 TiC 颗粒 增强相。

图 1 Ti和 Cr₃C₂反应的吉布斯自由能变化 Fig. 1 Gibbs energy of the reaction 2Ti+Cr₃C₂ ≈2TiC+3Cr

2.2 样品制备及涂层合成

试验用基体材料为 H13 热作模具钢,其主要化 学成分(质量分数):0.43 C,1.17 Si,0.48 Mn, 4.79 Cr,1.38 Mo,0.94 V,余为 Fe。试样尺寸为 100 mm×15 mm×14 mm。基材表面经机械磨光 和抛光后用无水乙醇和丙酮反复清洗以去除试样表 面残存的杂质。熔覆涂层材料选用 Ti 粉(纯度为 99.5 %, 粒度为 75 μ m)和 Cr₃C₂ 粉(纯度为 99.8%, 粒度为 75 μ m)。

采用感量为 0.1 mg 的电子天平按设计比例称 量,机械混合均匀后用有机粘结剂将其预置于 H13 钢基材表面(预置层厚度约为 1 mm)。激光熔覆前 将预置好的试样放在干燥箱中 70 ℃干燥 5 h 待用。

涂层制备在 GS-TFL 6000 型多模横流 CO₂ 激光器上进行。实际激光原位自生复合涂层制备过程中,

根据基体材料、熔覆粉末成分配比、粉末供给方式来 确定激光光斑尺寸和离焦量等激光工艺参数,然后通 过调节激光功率和扫描速度来控制复合涂层质量。 激光功率和扫描速度对熔覆涂层的影响可通过激光 功率密度来表示^[16]。试验采用激光单道扫描熔覆工 艺,离焦量为 50 mm,光斑尺寸 5 mm,通过氩气(纯度 为 99.99 %)侧向保护,气体流量 25 L•min⁻¹。不同 激光功率和扫描速度选择如表 1 所示。

表 1 激光熔覆复合涂层工艺参数	
------------------	--

Table 1 Experimental parameters of laser cladding composite coating							
0 1 1	Molar ratio	Laser power	Scanning speed	Laser power density			
Sample number	$ au_{ m m}/ m Ti$: $ m Cr_{ m 3} m C_{ m 2}$	P/kW	$V_{ m s}/(m mm\ m min^{-1})$	$P_w/(\mathrm{kW} \cdot \mathrm{cm}^{-2})$			
A1			$V_1 \!=\! 350$	15.68			
A2	$2.44 \cdot 1$	D = 2 c	$V_2 = 400$	13.72			
A3	2.44.1	$I_1 = 3.0$	$V_3 = 450$	12.19			
A4			$V_4 \!=\! 600$	9.14			
B1			$V_1 = 300$	19.30			
B2	2.1	$D = 2$ \circ	$V_2 = 350$	16.55			
B3	2•1	$F_2 = 5.8$	$V_3 = 400$	14.48			
B4			$V_4 \!=\! 450$	12.87			
C1			$V_1 \!=\! 250$	24.38			
C2	0.0.00	D = 4 0	$V_2 = 300$	20.32			
C3 C4	2.2.33	$\Gamma_{3} = 4.0$	$V_3 = 350$	17.42			
			$V_4 = 400$	15.24			

2.3 涂层性能表征

运用线切割将激光熔覆试样沿垂直于激光扫描 方向切取后制成金相试样,使用王水(HNO。和 HCl体积比1:3)腐蚀金相试样截面10~15 s并经 LEICA DFC280型光学显微镜(OM)和 XL30 ESEM-TMP型扫描电子显微镜(SEM)观察熔覆层 的微观组织形态,然后通过 XL30 ESEM-TMP型扫 描电镜(SEM)及其所附的 Phoenix+OIM 能谱仪 (EDS)分析熔覆层中的元素分布。

借助 D/max-3BXJXRD 型 X 射线(Cu K_a)衍射 仪分析熔覆层的物相组成,管压为 40 kV,管流为 30 mA,连续扫描模式,衍射角范围为 30°~100°。 运用 HVS-1000 型显微硬度计测量熔覆涂层截面显 微硬度,载荷 200 g,加载时间 15 s,同一层深取三点 测量求平均值。通过 MMU-5 屏显式摩擦磨损试验 机测试熔覆层在室温干滑动条件下的摩擦磨损性能 (上摩擦副为复合涂层试样,尺寸为 ϕ 4 mm × 15 mm;下摩擦副为 Cr12MoV 冷作模具钢,尺寸为 ϕ 43 mm×5 mm,硬度为 57~59 HRC),加载试验力 100 N,主轴转速为 200 r•min⁻¹,时间为 5400 s。

3 试验结果与分析

3.1 涂层表面宏观形貌

激光功率 P、扫描速度 V。和光斑尺寸 D 是决 定涂层吸收激光能量的主要参数,其对涂层表面宏 观质量的综合影响可通过激光功率密度来表示^[16], 激光功率密度过大时,基材表层熔化过多(稀释率较 大),激光功率密度过小时,基材表层熔化过少,涂层 与基材之间不能形成良好的冶金结合。因此,合适 的激光功率密度对保持涂层和基材成分稳定、形成 优异的熔覆涂层尤为重要。

图 2 为 Ti 和 Cr₃C₂ 粉末在三种化学成分配比 下,不同激光功率密度所制备熔覆涂层的表面宏观 形貌。可见,A 组试样涂层表面宏观形貌较差[图 2 (a)],存在大量气孔。B 组试样涂层表面宏观形貌 比 A 组试样要好[图 2(b)],表面气孔相对较少。C 组试样表面宏观形貌最佳,尤其是试样 C1 涂层表 面基本无气孔和裂纹出现[图 2(c)]。这是由于预 置层中 Cr₃C₂ 的熔点(1890 °C)高于 Ti 的熔点 (1668 °C),要保证高温下 Ti 与 Cr₃C₂ 原位合成反 应能够充分进行,需要较大的功率密度。

图 2 不同成分配比下复合涂层的表面宏观形貌。(a) A1~A4 样品;(b) B1~B4 样品;(c) C1~C4 样品

Fig. 2 Macro-morphologies of composite coatings from different compositional ratio. (a) Sample A1 \sim A4;

3.2 涂层 XRD 物相分析

图 3 为不同激光功率密度下熔覆涂层的 XRD 谱。可见, 谱峰中无 Cr_3C_2 和 Ti 峰存在, 表明 Cr₃C₂和Ti均已完全参与反应。同时,TiC峰的出 现亦表明 Ti 和 Cr₃C₂ 可原位自生 TiC 增强相。从 图中还可发现,试样 A1 涂层的主要物相为 TiC、 Cr_7C_3 和 Fe-Cr 固溶体。随着 Ti 含量的减少和 Cr₃C₂含量的增加,试样 B1 涂层中的 Cr₇C₃ 衍射峰 增多,而试样 C1 涂层中开始出现(Cr,Fe)₇C₃ 衍射 峰。由于激光功率密度和熔池凝固速率各异,基材 中 Fe 向涂层的扩散程度不同, 目 Cr 原子和 Fe 原 子在 M₇C₃ 型碳化物中的排列方式和两种原子的尺 寸又非常接近^[20],故基材中的 Fe 向涂层扩散过程 中会替代部分 Cr 原子的位置,形成了(Cr,Fe)₇C₃ 固溶体,因而试样 C1 涂层的谱峰中出现了新相 (Cr,Fe)₇C₃。在激光束作用下,由于 Cr₃C₂ 粉末具 有较高的激光能量吸收率和较低的导热系数,Cr₃C₂ 颗粒边缘会发生部分溶解和熔化,致使其周围形成 一层碳的富集区^[21]。熔融的 Ti 对 C 又具有正吸附 作用,即 Ti 与 C 原子有较大的亲和力,所以熔池中 的 Ti、C 便结合生成 TiC。同时,由于激光熔池中存 在着快速冷却和快速凝固过程,原子来不及扩散,于 是在 TiC 周围就形成一层 Cr 的富集区,反应后会 生成含 C 量较低的 $Cr_7 C_3$ 。

图 3 不同激光功率密度下复合涂层的 XRD 图谱 Fig. 3 XRD patterns of composite coatings from different laser power density

3.3 涂层显微组织

图 4 为不同激光功率密度下熔覆层截面结合区 的光学显微形貌。可以看出,试样截面主要由涂层 区(CZ)、结合区(BZ)和基材三部分组成。三种涂层 均与基材形成了良好的冶金结合,结合界面无气孔 和裂纹缺陷,且试样 C1 涂层与基材间有一明亮的 结合带[图 4(c)]。结合带的出现是由于熔覆层底 部温度梯度大而生长速率小,凝固界面以平界面生 长的结果。由于涂层成分配比和熔池内部凝固速率 的影响,结合区涂层组织也发生了明显转变,由粗大 均匀的枝晶组织向细小不均匀的枝晶组织转变。

图 5 为不同激光功率密度下熔覆涂层截面中部的SEM形貌。其中,试样A1主要由灰黑色1和灰

图 4 不同激光功率密度下涂层截面结合区 OM 形貌。(a) A1 样品;(b) B1 样品;(c) C1 样品 Fig. 4 Bonding zone OM morphologies of composite coatings from different laser power density. (a) Sample A1; (b) sample B1; (c) sample C1

白色 2 的圆胞晶状颗粒及晶间细小的白色颗粒 3 组 成[图 5(a)]。结合下表 2 的 EDS 分析结果,可见三 种组织均为碳化物,1、2 的胞晶状组织主要为 Ti 和 C 元素,同时含少量的 Cr,C:Ti 原子比分别为1:2 和 1:1。由此判断圆胞晶状组织主要为 TiC 相,晶 间细小白色颗粒 3 以 Cr 的碳化物为主。试样 B1 主 要为灰黑色聚合状 1 和灰白色树枝状 3 两种组织 [图 5(b)]。结合表 2 知,灰黑色聚合状 1 以 Ti 和 C 为主,C:Ti 原子比为1:2,故可判断组织 1 主要为 TiC 相,组织 3 主要为 Fe-Cr 固溶体。试样 C1 由灰 黑色薄层状 1,灰白色不规则块状 2 和晶间细小白 色颗粒 3 三种组织组成[图 5(c)]。同样结合表 2 可知三种组织也均为碳化物,组织1以Ti和C元素 为主,C:Ti原子比为1:2;组织2以Cr和C元素为 主,同时含少量的Fe,组织3以Cr、Fe和C元素为 主。因此,组织1为TiC相、组织2为Cr的碳化物、 组织3为Cr,Fe的碳化物。结合XRD分析结果, Cr的碳化物为Cr₇C₃,而Cr,Fe的碳化物则为(Cr, Fe)₇C₃固溶体。可见,随着激光功率密度的增加, TiC由胞晶状向薄层状转变。这是由于初生TiC在 激光熔覆过程中,表面可发生局部溶解,TiC密度较 小(4.51g・cm⁻³),快速凝固时,溶解的部分在原颗 粒表面以外延机制重新析出^[22]。

图 5 不同激光功率密度下涂层截面中部 SEM 形貌。(a) A1 样品;(b) B1 样品;(c) C1 样品

Fig. 5 Middle region SEM morphologies of composite coatings from different laser power density. (a) Sample A1;

(b) sample B1; (c) sample C1

从表 2 中还可看出,试样 A1、B1 和 C1 中 Fe 的 含量逐渐增多。这是基材中 Fe 向熔覆涂层扩散引 起的。随着激光功率密度的增加,涂层中热输入增 大,基材熔化量增多(即稀释率增加),基材中更多的

Fe 进入到了涂层。另一方面,试样 C1 的扫描速度 比试样 A1 和 B1 的慢,单位面积上的激光辐照时间 和熔池停留时间增长,导致基材中部分 Fe 进入熔 池中参与了反应。

表 2 复合涂层 EDS 分析结果 (原子数分数,%)

Fable 2	EDS analysis	results of	composite	coating	(atom	fraction,	%)
---------	--------------	------------	-----------	---------	-------	-----------	---	---

Flomont -	Sample A1		Sample B1			Sample C1		
Element -	1	2	3	1	3	1	2	3
С	30.31	41.97	17.65	32.68	8.82	28.12	17.89	21.15
Ti	66.96	46.78	24.53	61.03	10.94	56.65	2.74	4.69
Cr	2.73	11.26	56.00	4.75	51.19	11.35	63.67	43.05
Fe	_	_	1.82	1.44	29.05	3.88	15.69	30.08

3.4 涂层显微硬度

图 6 为不同激光功率密度下熔覆涂层沿层深方 向的显微硬度分布。可见,试样 A1,B1,C1 从涂层 至基材的显微硬度过渡较平稳,呈典型阶梯分布,涂 层显微硬度值最高,界面结合区次之,热影响区稍高 于基材。三种涂层试样平均显微硬度分别为830.9、 902.7 和 931.9 HV_{0.2},均明显高于 H13 钢基材(约 422.5 HV_{0.2}),分别是基材的 1.97、2.14 和 2.21 倍。根据不同激光功率密度下熔覆涂层的 XRD 图 谱可知,试样 A1、B1 和 C1 涂层中均含有 TiC 和 Cr_7C_3 相,试样 B1和 C1还有一定量的(Cr,Fe)₇C₃。 激光熔覆原位自生的TiC、 Cr_7C_3 和(Cr,Fe)₇C₃相 均为硬质颗粒,其在涂层中的含量不同导致涂层硬 度提高的程度不同。由图 6还可看出,试样C1的 显微硬度有较大波动范围,原因是薄层状TiC相与 Cr_7C_3 和(Cr,Fe)₇C₃相分离所致。

3.5 涂层摩擦磨损性能

图 7、8 分别为试样 A1、B1、C1 及基材的摩擦系数随时间变化关系曲线和磨损失重。由图 7 可看出,熔覆涂层试样 A1、B1 和 C1 的摩擦系数均低于

H13 钢,且波动较小,其中试样 A1 和 B1 的摩擦系 数较平稳,平均摩擦系数分别约为 0.44 和 0.45,试 样 C1 的摩擦系数则随磨损时间的延长而逐渐上 升,平均摩擦系数约为 0.51,而基材平均摩擦系数 则为 0.79,最终磨损失重仅为基材的 55.7%。出现 此现象的主要原因是由于激光原位自生的 TiC 和 M₇C₃ 都为硬质碳化物相,具有很高的显微硬度,这 些硬质相在熔覆层中的大量存在能有效提高涂层的 表面硬度。磨损过程中,这些碳化物硬质相在复合 涂层中起到钉扎骨架作用,提高了摩擦接触面的强 度,减缓了基材的磨损。同时,硬质相抑制了微凸体 的塑性变形,降低了粘着磨损趋势,使得熔覆层试样 摩擦系数较低,从而明显改善了熔覆层的耐磨性。

图 7 熔覆涂层的摩擦系数随时间变化曲线 Fig. 7 Friction coefficient curves of composite coatings and substrate

从图 8 可看出,相同磨损条件下,三种熔覆涂层 试样 A1、B1 和 C1 的磨损失重均小于 H13 钢基材, 其磨损失重依次为 4.81,5.21 和 6.53 mg,分别为 基材(磨损失重为 18.23 mg)的 27.2%、28.9%和 35.9%。虽然试样 C1 硬度高于试样 A1,但试样 A1 的摩擦系数却比试样 C1 稳定,磨损失重低于试 样 C1。结合图 5 所示的 SEM 形貌可看出,试样 A1 组织细小均匀,颗粒较圆整,因而涂层的韧性和抗拉 强度较好,试样 C1 中则出现了明显的分层现象,涂 层韧性不足,由于磨损时的相对滑动,硬质相因摩擦 力的作用容易剥落,导致接触面的粗糙度增加,使得 熔覆层试样 C1 的摩擦系数逐渐增大,加之磨损过程 中磨屑的二次磨损作用,试样 C1 摩擦系数波动较大。 因此,熔覆层试样 A1 的抗磨性优于试样 C1。

图 8 熔覆涂层和基材的磨损失重

4 结 论

 1)激光熔覆不同成分配比的 Ti 和 Cr₃C₂ 混合 粉末,可在 H13 热作模具钢表面原位自生出以 TiC 颗粒为增强相的激光熔覆复合涂层。当 Ti 与 Cr₃C₂ 物质的量比为 2:2.33,激光功率密度为 24.38 kW·cm⁻²时,涂层表面宏观质量良好,无气 孔和裂纹缺陷。

2) 当 Ti 与 Cr₃C₂ 物质的量比为 2.44:1时,涂 层中的主要物相为 TiC、Cr₇C₃ 和 Fe-Cr 固溶体;当 Ti 与 Cr₃C₂ 物质的量比为 2:1时,涂层中 Cr₇C₃ 相 增多;当 Ti 与 Cr₃C₂ 物质的量比为 2:2.33 时,涂层 中出现(Cr,Fe)₇C₃ 碳化物。激光原位自生出的 TiC 形貌随激光功率密度的增大由胞晶状向薄层状 转变。

3)激光熔覆复合涂层的显微硬度自涂层表面 至基材过渡平稳,平均显微硬度最高为基体的2.21 倍。相同摩擦磨损条件下,原位自生复合涂层试样 的摩擦系数较小,最低平均摩擦系数为基材的 55.7%,最小磨损失重仅为基材的 27.2%。

参考文献

孔德军,张 垒,宋仁国,等. 激光淬火对 40CrNiMo 高强度钢 疲劳性能与断口形貌的影响[J]. 中国激光, 2013, 40(11): 1103005.

2 Sun Ronglu, Niu Wei, Lei Yiwen, et al.. Microstructure and

¹ Kong Dejun, Zhang Lei, Song Renguo, *et al.*. Effect of laser quenching on fatigue properties and fracture morphologies of 40CrNiMo high strength steel[J]. Chinese J Lasers, 2013, 40 (11): 1103005.

frictional wear properties of laser clad in situ $Cr_x S_y/Ni$ composite coating[J]. Chinese J Lasers, 2013, 40(10): 1003005. 孙荣禄,牛 伟,雷贻文,等.激光熔覆原位自生 $Cr_x S_y/Ni$ 基复 合涂层的微观组织和摩擦磨损性能[J]. 中国激光, 2013, 40 (10): 1003005.

- 3 Zhang Xiaowei, Liu Hongxi, Jiang Yehua, *et al.*. Research progress of functional composite coatings on Ti6Al4V alloy surface prepared by laser cladding technique [J]. Rare Metal Materials Engineering, 2012, 41(1): 178-183.
- 张晓伟,刘洪喜,蒋业华,等. Ti6Al4V 合金表面激光熔覆功能 复合涂层研究进展[J]. 稀有金属材料与工程,2012,41(1): 178-183.
- 4 Olivier Brucelle, Gerard Bernhart. Methodology for service life increase of hot forging tools[J]. Journal of Materials Processing Technology, 1999, 87(1-): 237-246.
- 5 Mohamed Kchaou, Riadh Ellecuch, Yannick Desplanques, *et al.*. Failure mechanisms of H13 die on relation to the forging process-A case study of brass gas valves[J]. Engineering Failure Analysis, 2010, 17(2): 403-415.
- 6 Min Yongan, Wu Xiaochun, Wang Rong, et al.. Prediction and analysis on oxidation of H13 hot work steel[J]. Journal of Iron and Steel Research, International, 2006, 13(1): 44-49.
- 7 Cui Xianghong, Wang Shuqi, Jiang Qichuan, *et al.*. Research on thermal wear of cast hot forging die steel modified by rare earths [J]. Journal of Rare Earths, 2007, 25(1): 88-92.
- 8 D Papageorgiou, C Medrea, N Kyriakou. Failure analysis of H13 working die used in plastic injection moulding [J]. Engineering Failure Analysis, 2013, 35(15): 355-359.
- 9 Tang Xiaodan, Yao Jianhua, Kong Fanzhi, *et al.*. Manufacture and microstructure performance of H13-TiC gradient composite coating made by laser cladding[J]. Laser Technology, 2010, 34 (3): 18-21.

汤晓丹,姚建华,孔凡志,等. 激光熔覆 H13-TiC 梯度复合涂层 的制备与组织性能[J]. 激光技术,2010,34(3):326-331.

- 10 Zhang Wei. Research on microstructure and property of Fe-VC composite material made by laser cladding[J]. Physics Procedia, 2012, 25: 200-204.
- 11 J H Lee, J H Jang, B D Joo, *et al.*. Application of direct laser metal tooling for AISI H13 tool steel [J]. Transactions of Nonferrous Metals Society of China, 2009, 19(1); S284-S287.
- 12 B D Joo, J H Jang, J H Lee, *et al.*. Selective laser melting of Fe-Ni-Cr layer on AISI H13 tool steel[J]. Transaction of Nonferrous Metals Society of China, 2009, 19(4): 921-924.

- 13 W H Jiang, R Kovacevict. Laser deposited TiC/H13 tool steel composite coatings and their erosion resistance[J]. Journal of Materials Processing Technology, 2007, 186: 331-338.
- 14 Yang Sen, Zhong Minlin, Liu Wenjin. TiC particulate composite coating produced in situ by laser cladding[J]. Materials Science and Engineering A, 2003, 343(1-2): 57-62.
- 15 Ali Emamian, Stephen F Corbin, Amir Khajepour. The influence of combined laser parameters on *in-situ* formed TiC morphology during laser cladding[J]. Surface & Coatings Technology, 2011, 206(1): 124-131.
- 16 Zhang Xiaowei, Liu Hongxi, Jiang Yehua, et al.. Laser in-situ synthesized TiN/Ti₃Al composite coatings[J]. Acta Metallurgica Sinica, 2011, 47(8): 1086-1093. 张晓伟,刘洪喜,蒋业华,等.激光原位合成 TiN/Ti₃Al 基复合 涂层[J]. 金属学报, 2011, 47(8): 1086-1093.
- 17 Ali Emamia, Stephen F Corbin, Amir Khajepour. Tribology characteristics of *in-situ* laser deposition of the Fe-TiC [J]. Surface and Coatings Technology, 2012, 206(22): 4495-4501.
- 18 Zhang Xianhu, Chao Mingju, Liang Erjun, et al. In-situ synthesis of TiC-ZrC particulate reinforced Ni-Based composite coatings by laser cladding[J]. Chinese J Lasers, 2009, 36(4): 998-1004.

张现虎, 晁明举, 梁二军, 等. 激光熔覆原位生成 TiC-ZrC 颗粒 增强镍基复合涂层[J]. 中国激光, 2009, 36(4): 998-1004.

19 Ye Dalun, Hu Jianhua. Practical Inorganic Thermodynamic Databook[M]. Second edition, Beijing: Metallurgical Industry Press, 2002. 1-25.

叶大伦,胡建华.实用无机物热力学数据手册[M].第二版,北 京:冶金工业出版社,2002.1-25.

- 20 Youlu Yuan, Zhuguo Li. Analysis of nucleation of carbide (Cr, Fe)₇C₃ in the Cr₃C₂/Fe-CrNiBSi composite coating[J]. Surface & Coatings Technology, 2013, 228(15): 41-47.
- 21 X H Wang, M Zhang, X M Liu, *et al.*. Microstructure and wear properties of TiC/FeCrBSi surface composite coating prepared by laser cladding [J]. Surface & Coatings Technology, 2008, 202 (15): 3600-3606.
- 22 Xu Ning, Zhang Qunli, Yao Jianhua. Microstructure of *in-site* synthesis TiC hardened coating by laser irradiation[J]. Chinese J Lasers, 2010, 37(10): 2653-2657.

徐 柠,张群莉,姚建华.激光原位反应制备 TiC 强化涂层的显 微结构[J].中国激光,2010,37(10):2653-2657.

栏目编辑:何卓铭